
LECTURE- 22

DFS Design and

Implementation

Distributed Operating System

File Concept

 OS abstracts from the physical

storage devices to define a logical

storage unit: File

 Types:

◦ Data: numeric, alphabetic, alphanumeric,

binary

◦ Program: source and object form

Distributed Operating System

Logical components of a file

 File name: symbolic name

◦ When accessing a file, its symbolic name is

mapped to a unique file id (ufid or file handle)

that can locate the physical file

 Mapping is the primary function of the directory

service

 File attributes – next slide

 Data units

◦ Flat structure of a stream of bytes of

sequence of blocks

◦ Hierarchical structure of indexed records

 Distributed Operating System

File Attributes

 File Handle – Unique ID of file

 Name – only information kept in human-readable
form

 Type – needed for systems that support different
types

 Location – pointer to file location on device

 Size – current file (and the maximum allowable)
size

 Protection – controls who can read, write,
execute

 Time, date, and user identification – data for
protection, security, and usage monitoring.

 Information about files are kept in the directory
structure, which is maintained on the physical
storage device.

Distributed Operating System

Access Methods

 Sequential access: information is
processed in order
◦ read next
◦ write next (append to the end of the file)
◦ reset to the beginning of file
◦ skip forward or backward n records

 Direct access: a file is made up of fixed
length logical blocks or records
◦ read n
◦ write n
◦ position to n
◦ read next
◦ write next
◦ rewrite n

Distributed Operating System

Access Methods (Cont.)

 Indexed sequential access
◦ Data units are addressed directly by using an

index (key) associated with each data block

◦ Requires the maintenance of an search index
on the file, which must be searched to locate
a block address for each access

◦ Usually used only by large file systems in
mainframe computers

◦ Indexed sequential access method (ISAM)
 A two-level scheme to reduce the size of the search

index

 Combine the direct and sequential access methods

Distributed Operating System

Major Components in A File

System

Directory Service Name resolution, add and deletion of files

Authorization Service Capability and /or access control list

File Service

Transaction Concurrency and replication management

Basic Read/write files and get/set attributes

System Service Device, cache, and block management

A file system organizes and provides access and

protection services for a collection of files

Distributed Operating System

Directory Structure

 Access to a file must first use a

directory service to locate the

file.

 A collection of nodes containing

information about all files.

 Both the directory structure and

the files reside on disk.

F 1 F 2
F 3

F 4

F n

Directory

Files

Distributed Operating System

Information in a Directory

 Name
 Type: file, directory, symbolic link, special

file…
 Address: device blocks to store a file
 Current length
 Maximum length
 Date last accessed (for archival)
 Date last updated (for dump)
 Owner ID
 Protection information

Distributed Operating System

Operations Performed on

Directory
 Search for a file

 Create a file

 Delete a file

 List a directory

 Rename a file

 Traverse the file system

Some kind of name service

Distributed Operating System

Tree-Structured Directories – Hierarchical

Structure of A File System

Subdirectory is just a

special type of file…
Distributed Operating System

Authorization Service

 File access must be regulated to ensure
security

 File owner/creator should be able to control:

◦ what can be done

◦ by whom

 Types of access

◦ Read

◦ Write

◦ Execute

◦ Append

◦ Delete

◦ List

Distributed Operating System

File Service – File Operations

 Create

◦ Allocate space

◦ Make an entry in the
directory

 Write

◦ Search the directory

◦ Write is to take place at the
location of the write pointer

 Read

◦ Search the directory

◦ Read is to take place at the
location of the read pointer

 Reposition within file – file
seek

◦ Set the current file pointer
to a given value

 Delete

◦ Search the directory

◦ Release all file space

 Truncate

◦ Reset the file to length zero

 Open(Fi)

◦ Search the directory
structure

◦ Move the content of the
directory entry to memory

 Close(Fi)

◦ move the content in
memory to directory
structure on disk

 Get/set file attributes

Distributed Operating System

System Service

 Directory, authorization, and file services

are user interfaces to a file system (FS)

 System services are a FS’s interface to

the hardware and are transparent to

users of FS

◦ Mapping of logical to physical block

addresses

◦ Interfacing to services at the device level for

file space allocation/de-allocation

◦ Actual read/write file operations

◦ Caching for performance enhancement

◦ Replicating for reliability improvement
Distributed Operating System

DFS Architecture –

NFS Example

Distributed Operating System

File Mounting

 A useful concept for constructing a large file
system from various file servers and storage
devices

 Attach a remote named file system to the client’s
file system hierarchy at the position pointed to by
a path name (mounting point)
◦ A mounting point is usually a leaf of the directory tree

that contains only an empty subdirectory
◦ mount claven.lib.nctu.edu.tw:/OS /chow/book

 Once files are mounted, they are accessed by
using the concatenated logical path names
without referencing either the remote hosts or
local devices
◦ Location transparency
◦ The linked information (mount table) is kept until they

are unmounted

Distributed Operating System

File Mounting Example

root

chow

paper book

root

OS

DFS DSM

Local Client Remote Server

Export

Mount

DFS DSM /chow/book/DSM

/OS/DSM

Distributed Operating System

File Mounting (Cont.)

 Different clients may perceive a different FS
view
◦ To achieve a global FS view – SA enforces

mounting rules
 Export: a file server restricts/allows the

mounting of all or parts of its file system to a
predefined set of hosts
◦ The information is kept in the server’s export file

 File system mounting:
◦ Explicit mounting: clients make explicit mounting

system calls whenever one is desired
◦ Boot mounting: a set of file servers is prescribed

and all mountings are performed the client’s boot
time

◦ Auto-mounting: mounting of the servers is
implicitly done on demand when a file is first
opened by a client

Distributed Operating System

Location Transparency

No global naming

Distributed Operating System

A Simple Automounter for

NFS

Distributed Operating System

Server Registration

 The mounting protocol is not transparent –
require knowledge of the location of file
servers

 When multiple file servers can provide the
same file service, the location information
becomes irrelevant to the clients

 Server registration  name/address
resolution

◦ File servers register their services with a
registration service, and clients consult with the
registration server before mounting

◦ Clients broadcast mounting requests, and file
servers respond to client’s requests

Distributed Operating System

Stateful and Stateless File

Servers
 Stateless file server – when a client sends a request to a

server, the server carries out the request, sends the reply,
and then remove from its internal tables all information about
the request

◦ Between requests, no client-specific information is kept on the
server

◦ Each request must be self-contained: full file name and offset…

 Stateful file server – file servers maintain state information
about clients between requests

 State information – may be kept in servers or clients

◦ Opened files and their clients

◦ File descriptors and file handles

◦ Current file position pointers

◦ Mounting information

◦ Lock status

◦ Session keys

◦ Cache or buffer

Session: a connection for a sequence

of requests and responses between a

client and the file server

Distributed Operating System

A Comparison between Stateless

and Stateful Servers

Advantages of Stateless Server Advantages of Stateful Server

No OPEN/CLOSE calls needed Better performance

Fault tolerance Shorter request messages

No server space wasted on tables Read-ahead possible

No limits on number of open files Idempotency easier

No problems if a client crashes File locking possible

Easy to implement More flexible

Distributed Operating System

Issues of A Stateless File

Server
 Idempotency requirement

◦ Is it practical to structure all file accesses

as idempotent operations?

 File locking mechanism

◦ Should locking mechanism be integrated

into the transaction service?

 Session key management

◦ Can one-time session key be used for

each file access?

 Cache consistency

◦ Is the file server responsible for controlling
Distributed Operating System

File Sharing

 Overlapping access: multiple copies of
the same file
◦ Space multiplexing of the file

◦ Cache or replication

◦ Coherency control: managing accesses to
the replicas, to provide a coherent view of
the shared file

◦ Desirable to guarantee the atomicity of
updates (to all copies)

 Interleaving access: multiple
granularities of data access operations
◦ Time multiplexing of the file

◦ Simple read/write, Transaction, Session

Distributed Operating System

Space Multiplexing

 Remote access: no file data is kept in

the client machine. Each access

request is transmitted directly to the

remote file server through the

underlying network.

 Cache access: a small part of the file

data is maintained in a local cache. A

write operation or cache miss results a

remote access and update of the

cache

 Download/upload access: the entire
Distributed Operating System

Remote Access VS

Download/Upload Access

Remote Access Download/Upload Access

Distributed Operating System

Four Places to Caching

Client Server

Client’s

main memory

Client’s disk

(optional) Server’s

main memory

Server’s disk

Distributed Operating System

Coherency of Replicated Data

 Four interpretations:

◦ All replicas are identical at all times

 Impossible in distributed systems

◦ Replicas are perceived as identical only at

some points in time

 How to determine the good synchronization

points?

◦ Users always read the “most recent” data

in the replicas

 How to define “most recent”?

 Based on the “completion” times of write operations

(the effect of a write operation has been reflected in all

copies)
Distributed Operating System

Time Multiplexing

 Simple RW: each read/write operation

is an independent request/response

access to the file server

 Transaction RW: a sequence of read

and write operations is treated as a

fundamental unit of file access (to the

same file)

◦ ACID properties

 Session RW: a sequence of

transaction and simple RW operations
Distributed Operating System

Space and Time

Concurrencies of File

Access
 Space

Time

Remote Access Cache Access Download/Upload

Access

Simple RW No true sharing Coherency

Control

Coherency

Control

Transaction Concurrency

Control

Coherency and

Concurrency

Control

Coherency and

Concurrency

Control

Session Not applicable Not applicable

Ignore sharing

Distributed Operating System

Semantics of File Sharing

a) On a single processor, when a read follows a

write, the value returned by the read is the

value just written (Unix Semantics).

b) In a distributed system with caching, obsolete

values may be returned.

Solution to coherency and

concurrency control problems

depends on the semantics of

sharing required by

applications

Distributed Operating System

Semantics of File Sharing

(Cont.)

Unix Semantics

(Currency)

Every operation on a file is instantly visible to all

processes. File accesses with a write-through

cache and write-invalidation

Transaction Semantics

(Consistency)

All changes have the all-or-nothing property.

Update the server at the end of a transaction.

Immutable Files No updates are possible;

simplify sharing and replication

Session Semantics

(Efficiency)

No changes are visible to other processes until

the file is closed. Update the server at the end of

a session.

Distributed Operating System

Version Control

 Version control under immutable files

◦ Implemented as a function of the directory

service

◦ Each file is attached with a version

number

◦ An open to a file always returns the

current version

◦ Subsequently read/write operations to the

opened files are made only to the local

working copy

◦ When the file is closed, the local modified

version (tentative version) is presented to
Distributed Operating System

Version Control (Cont.)

 Action to be taken if based on an older

version…

◦ Ignore conflict: a new version is created

regardless of what has happened

(equivalent to session semantics)

◦ Resolve version conflict: the modified data

in the tentative version are disjoint from

those in the new current version

 Merge the updates in the tentative version with

the current version to yield to a new version

that combines all updates

◦ Resolve serializability conflict: the

modified data in the tentative version were

Distributed Operating System

Windows 2003 Server R2

The purpose of distributed file system is

to minimize network traffic due to file

replication and optimize the

administration of shared folder

Distributed Operating System

DFS Replication

 DFS Replication is a state-based,

multimaster replication engine that

supports replication scheduling and

bandwidth throttling. DFS Replication

uses a new compression protocol

called Remote Differential

Compression (RDC), which can be

used to efficiently update files over a

limited-bandwidth network. RDC

detects insertions, removals, and re-

arrangements of data in files, thereby

enabling DFS Replication to replicate

Distributed Operating System

Namespaces

 DFS Namespaces, formerly known as

Distributed File System, allows

administrators to group shared folders

located on different servers and

present them to users as a virtual tree

of folders known as a namespace. A

namespace provides numerous

benefits, including increased

availability of data, load sharing, and

simplified data migration.
Distributed Operating System

DFS in Win2003 R2

Distributed Operating System

ASSIGNMENT

 Q: Explain DFS design and

implementation.

Distributed Operating System

