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File Concept 

 OS abstracts from the physical 

storage devices to define a logical 

storage unit: File 

 Types:  

◦ Data: numeric, alphabetic, alphanumeric, 

binary 

◦ Program: source and object form 
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Logical components of a file 

 File name: symbolic name 

◦ When accessing a file, its symbolic name is 

mapped to a unique file id (ufid or file handle) 

that can locate the physical file 

 Mapping is the primary function of the directory 

service 

 File attributes – next slide 

 Data units 

◦ Flat structure of a stream of bytes of 

sequence of blocks 

◦ Hierarchical structure of indexed records 
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File Attributes 

 File Handle – Unique ID of file 

 Name – only information kept in human-readable 
form 

 Type – needed for systems that support different 
types 

 Location – pointer to file location on device 

 Size – current file (and the maximum allowable) 
size 

 Protection – controls who can read, write, 
execute 

 Time, date, and user identification – data for 
protection, security, and usage monitoring. 

 Information about files are kept in the directory 
structure, which is maintained on the physical 
storage device. 
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Access Methods 

 Sequential access: information is 
processed in order 
◦ read next 
◦ write next (append to the end of the file) 
◦ reset to the beginning of file 
◦ skip forward or backward n records 

 Direct access: a file is made up of fixed 
length logical blocks or records 
◦ read n 
◦ write n 
◦ position to n 
◦ read next 
◦ write next  
◦ rewrite n 
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Access Methods (Cont.) 

 Indexed sequential access 
◦ Data units are addressed directly by using an 

index (key) associated with each data block 

◦ Requires the maintenance of an search index 
on the file, which must be searched to locate 
a block address for each access 

◦ Usually used only by large file systems in 
mainframe computers 

◦ Indexed sequential access method (ISAM) 
 A two-level scheme to reduce the size of the search 

index 

 Combine the direct and sequential access methods 
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Major Components in A File 

System 

Directory Service Name resolution, add and deletion of files 

Authorization Service Capability and /or access control list 

 

File Service 

Transaction Concurrency and replication management 

Basic Read/write files and get/set attributes 

System Service Device, cache, and block management 

A file system organizes and provides access and 

protection services for a collection of files 
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Directory Structure 

 Access to a file must first use a 

directory service to locate the 

file. 

 A collection of nodes containing 

information about all files. 

 Both the directory structure and 

the files reside on disk. 

F 1 F 2 
F 3 

F 4 

F n 

Directory 

Files 
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Information in a Directory 

 Name  
 Type: file, directory, symbolic link, special 

file… 
 Address: device blocks to store a file 
 Current length 
 Maximum length 
 Date last accessed (for archival) 
 Date last updated (for dump) 
 Owner ID 
 Protection information  

Distributed Operating System 



Operations Performed on 

Directory 
 Search for a file 

 Create a file 

 Delete a file 

 List a directory 

 Rename a file 

 Traverse the file system 

Some kind of name service 
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Tree-Structured Directories – Hierarchical 

Structure of A File System 

Subdirectory is just a 

special type of file… 
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Authorization Service 

 File access must be regulated to ensure 
security 

 File owner/creator should be able to control: 

◦ what can be done 

◦ by whom 

 Types of access 

◦ Read 

◦ Write 

◦ Execute 

◦ Append 

◦ Delete 

◦ List 
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File Service – File Operations  

 Create 

◦ Allocate space 

◦ Make an entry in the 
directory 

 Write  

◦ Search the directory 

◦ Write is to take place at the 
location of the write pointer 

 Read 

◦ Search the directory 

◦ Read is to take place at the 
location of the read pointer 

 Reposition within file – file 
seek 

◦ Set the current file pointer 
to a given value 

 Delete 

◦ Search the directory 

◦ Release all file space 

 Truncate 

◦ Reset the file to length zero 

 Open(Fi) 

◦ Search the directory 
structure  

◦ Move the content of the 
directory entry to memory 

 Close(Fi) 

◦ move the content in 
memory to directory 
structure on disk 

 Get/set file attributes 
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System Service 

 Directory, authorization, and file services 

are user interfaces to a file system (FS) 

 System services are a FS’s interface to 

the hardware and are transparent to 

users of FS 

◦ Mapping of logical to physical block 

addresses 

◦ Interfacing to services at the device level for 

file space allocation/de-allocation 

◦ Actual read/write file operations 

◦ Caching for performance enhancement 

◦ Replicating for reliability improvement 
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DFS Architecture –  

NFS Example 
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File Mounting 

 A useful concept for constructing a large file 
system from various file servers and storage 
devices 

 Attach a remote named file system to the client’s 
file system hierarchy at the position pointed to by 
a path name (mounting point) 
◦ A mounting point is usually a leaf of the directory tree 

that contains only an empty subdirectory 
◦ mount claven.lib.nctu.edu.tw:/OS /chow/book 

 Once files are mounted, they are accessed by 
using the concatenated logical path names 
without referencing either the remote hosts or 
local devices 
◦ Location transparency 
◦ The linked information (mount table) is kept until they 

are unmounted 
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File Mounting Example 

root 

chow 

paper book 

root 

OS 

DFS DSM 

Local Client Remote Server 

Export 

Mount 

DFS DSM /chow/book/DSM 

/OS/DSM 
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File Mounting (Cont.) 

 Different clients may perceive a different FS 
view 
◦ To achieve a global FS view – SA enforces 

mounting rules 
 Export: a file server restricts/allows the 

mounting of all or parts of its file system to a 
predefined set of hosts 
◦ The information is kept in the server’s export file 

 File system mounting: 
◦ Explicit mounting: clients make explicit mounting 

system calls whenever one is desired 
◦ Boot mounting: a set of file servers is prescribed 

and all mountings are performed the client’s boot 
time 

◦ Auto-mounting: mounting of the servers is 
implicitly done on demand when a file is first 
opened by a client 
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Location Transparency 

No global naming 
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A Simple Automounter for 

NFS 
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Server Registration 

 The mounting protocol is not transparent – 
require knowledge of the location of file 
servers 

 When multiple file servers can provide the 
same file service, the location information 
becomes irrelevant to the clients 

 Server registration  name/address 
resolution 

◦ File servers register their services with a 
registration service, and clients consult with the 
registration server before mounting 

◦ Clients broadcast mounting requests, and file 
servers respond to client’s requests 
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Stateful and Stateless File 

Servers 
 Stateless file server – when a client sends a request to a 

server, the server carries out the request, sends the reply, 
and then remove from its internal tables all information about 
the request 

◦ Between requests, no client-specific information is kept on the 
server 

◦ Each request must be self-contained: full file name and offset… 

 Stateful file server – file servers maintain state information 
about clients between requests 

 State information – may be kept in servers or clients 

◦ Opened files and their clients 

◦ File descriptors and file handles 

◦ Current file position pointers 

◦ Mounting information 

◦ Lock status 

◦ Session keys 

◦ Cache or buffer 

Session: a connection for a sequence 

of requests and responses between a 

client and the file server 
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A Comparison between Stateless 

and Stateful Servers 

Advantages of Stateless Server Advantages of Stateful Server 

No OPEN/CLOSE calls needed Better performance 

Fault tolerance Shorter request messages 

No server space wasted on tables Read-ahead possible 

No limits on number of open files Idempotency easier 

No problems if a client crashes File locking possible 

Easy to implement More flexible 
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Issues of A Stateless File 

Server 
 Idempotency requirement 

◦ Is it practical to structure all file accesses 

as idempotent operations? 

 File locking mechanism 

◦ Should locking mechanism be integrated 

into the transaction service? 

 Session key management 

◦ Can one-time session key be used for 

each file access? 

 Cache consistency 

◦ Is the file server responsible for controlling 
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File Sharing 

 Overlapping access: multiple copies of 
the same file 
◦ Space multiplexing of the file 

◦ Cache or replication 

◦ Coherency control: managing accesses to 
the replicas, to provide a coherent view of 
the shared file 

◦ Desirable to guarantee the atomicity of 
updates (to all copies) 

 Interleaving access: multiple 
granularities of data access operations 
◦ Time multiplexing of the file 

◦ Simple read/write, Transaction, Session 
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Space Multiplexing 

 Remote access: no file data is kept in 

the client machine. Each access 

request is transmitted directly to the 

remote file server through the 

underlying network. 

 Cache access: a small part of the file 

data is maintained in a local cache. A 

write operation or cache miss results a 

remote access and update of the 

cache 

 Download/upload access: the entire 
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Remote Access VS 

Download/Upload Access 

Remote Access Download/Upload Access 
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Four Places to Caching 

Client Server 

Client’s  

main memory 

Client’s disk 

(optional) Server’s  

main memory 

Server’s disk  
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Coherency of Replicated Data 

 Four interpretations: 

◦ All replicas are identical at all times 

 Impossible in distributed systems 

◦ Replicas are perceived as identical only at 

some points in time 

 How to determine the good synchronization 

points? 

◦ Users always read the “most recent” data 

in the replicas 

 How to define “most recent”? 

 Based on the “completion” times of write operations 

(the effect of a write operation has been reflected in all 

copies) 
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Time Multiplexing 

 Simple RW: each read/write operation 

is an independent request/response 

access to the file server 

 Transaction RW: a sequence of read 

and write operations is treated as a 

fundamental unit of file access (to the 

same file)  

◦ ACID properties 

 Session RW: a sequence of 

transaction and simple RW operations 
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Space and Time 

Concurrencies of File 

Access 
            Space 

Time 

Remote Access Cache Access Download/Upload 

Access 

Simple RW No true sharing Coherency 

Control 

Coherency 

Control 

 

Transaction Concurrency 

Control 

Coherency and 

Concurrency 

Control 

 

Coherency and 

Concurrency 

Control 

 

Session Not applicable Not applicable 

 

Ignore sharing 
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Semantics of File Sharing  

a) On a single processor, when a read follows a 

write, the value returned by the read is the 

value just written (Unix Semantics). 

b) In a distributed system with caching, obsolete 

values may be returned. 

Solution to coherency and 

concurrency control problems 

depends on the semantics of 

sharing required by 

applications 
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Semantics of File Sharing 

(Cont.) 

Unix Semantics 

(Currency) 

Every operation on a file is instantly visible to all 

processes. File accesses with a write-through 

cache and write-invalidation 

Transaction Semantics 

(Consistency) 

All changes have the all-or-nothing property. 

Update the server at the end of a transaction.  

Immutable Files No updates are possible; 

simplify sharing and replication 

Session Semantics 

(Efficiency) 

No changes are visible to other processes until 

the file is closed. Update the server at the end of 

a session.  

Distributed Operating System 



Version Control 

 Version control under immutable files 

◦ Implemented as a function of the directory 

service 

◦ Each file is attached with a version 

number 

◦ An open to a file always returns the 

current version 

◦ Subsequently read/write operations to the 

opened files are made only to the local 

working copy 

◦ When the file is closed, the local modified 

version (tentative version) is presented to 
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Version Control (Cont.) 

 Action to be taken if based on an older 

version… 

◦ Ignore conflict: a new version is created 

regardless of what has happened 

(equivalent to session semantics) 

◦ Resolve version conflict: the modified data 

in the tentative version are disjoint from 

those in the new current version 

 Merge the updates in the tentative version with 

the current version to yield to a new version 

that combines all updates 

◦ Resolve serializability conflict: the 

modified data in the tentative version were 
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Windows 2003 Server R2 

The purpose of distributed file system is 

to minimize network traffic due to file 

replication and optimize the 

administration of shared folder 
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DFS Replication 

 DFS Replication is a state-based, 

multimaster replication engine that 

supports replication scheduling and 

bandwidth throttling. DFS Replication 

uses a new compression protocol 

called Remote Differential 

Compression (RDC), which can be 

used to efficiently update files over a 

limited-bandwidth network. RDC 

detects insertions, removals, and re-

arrangements of data in files, thereby 

enabling DFS Replication to replicate 
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Namespaces 

 DFS Namespaces, formerly known as 

Distributed File System, allows 

administrators to group shared folders 

located on different servers and 

present them to users as a virtual tree 

of folders known as a namespace. A 

namespace provides numerous 

benefits, including increased 

availability of data, load sharing, and 

simplified data migration. 
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DFS in Win2003 R2 
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ASSIGNMENT 

 Q: Explain DFS design and 

implementation. 
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